提示: 手机请竖屏浏览!

SARS-CoV-2变异株和疫苗
SARS-CoV-2 Variants and Vaccines


Philip R. Krause ... 传染病 呼吸系统疾病 • 2021.07.08
相关阅读
• COVID-19疫苗对B.1.617.2(delta)变异株的预防效果 • 不同COVID-19疫苗混合接种可增强免疫应答 • SARS-CoV-2变异株和疫情控制工作的相互影响 • 流行SARS-CoV-2变异株对血清中和作用的敏感性 • 高度适应性SARS-CoV-2变异株的出现

摘要


SARS-CoV-2可能出现高关注变异株(variant of concern),此类变异株对当前COVID-19疫苗诱导产生的免疫力具有危险的抗性。此外,如果一些高关注变异株具有更强传染性或毒力,那么有效公共卫生措施和疫苗接种计划的重要性将提升。全球应对措施必须及时且有科学依据。

除继续追踪SARS-CoV-2新变异株之外,针对高关注变异株制定全球应对措施时有4个主要优先事项(表1)。这些优先事项包括通过科学方法评估现有疫苗及开发改良疫苗和新疫苗,目的是确定现有疫苗是否正在丧失对变异株的预防效力,决定是否应开发改良疫苗或新疫苗来恢复对变异株的预防效力,降低出现高关注变异株的可能性,以及通过世界卫生组织(WHO)协调国际上对新变异株的研究和应对工作(总体和疫苗)。

 

表1. 旨在控制病毒变异株的疫苗相关优先事项*

* 现有疫苗指的是临床试验已证明有效的疫苗,改良疫苗指的是通过现有疫苗递送新抗原的疫苗,新疫苗指的是全新的疫苗。SARS-CoV-2表示严重急性呼吸综合征冠状病毒2。





作者信息

Philip R. Krause, M.D., Thomas R. Fleming, Ph.D., Ira M. Longini, Ph.D., Richard Peto, F.R.S., Sylvie Briand, M.D., David L. Heymann, M.D., Valerie Beral, F.R.C.P., Matthew D. Snape, M.D., Helen Rees, M.R.C.G.P., Alba-Maria Ropero, B.Sc., Ran D. Balicer, M.D., Jakob P. Cramer, M.D., César Muñoz-Fontela, Ph.D., Marion Gruber, Ph.D., Rogerio Gaspar, Ph.D., Jerome A. Singh, Ph.D., Kanta Subbarao, M.B., B.S., Maria D. Van Kerkhove, Ph.D., Soumya Swaminathan, M.D., Michael J. Ryan, M.D., and Ana-Maria Henao-Restrepo, M.D.
From the Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD (P.R.K., M.G.); the Department of Biostatistics, University of Washington, Seattle (T.R.F.); the Department of Biostatistics, University of Florida, Gainesville (I.M.L.); the Nuffield Department of Population Health, University of Oxford (R.P., V.B.), and the Oxford Vaccine Group, Department of Paediatrics, University of Oxford and National Institute for Health Research Oxford Biomedical Research Centre (M.D.S.), Oxford, and the Global Health Programme, Chatham House (D.L.H.), and the Coalition for Epidemic Preparedness Innovations (J.P.C.), London — all in the United Kingdom; the Howard College School of Law, University of KwaZulu-Natal, Durban (J.A.S.), and the Wits Reproductive Health and HIV Institute, Johannesburg (H.R.) — both in South Africa; the Dalla Lana School of Public Health, University of Toronto, Toronto (J.A.S.); the Clalit Research Institute, Innovation Division, Clalit Health Services, Tel Aviv, Israel (R.D.B.); the Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany (C.M.-F.); the World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia (K.S.); and the World Health Organization, Geneva (S.B., A.-M.R., R.G., M.D.V.K., S.S., M.J.R., A.-M.H.-R.). Address reprint requests to Dr. Krause at the Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Bldg. 71, Rm. 3234, 10903 New Hampshire Ave., Silver Spring, MD 20993, or at philip.krause@fda.hhs.gov.

 

参考文献

1. Global Initiative on Sharing All Influenza Data (GISAID). hCoV-19 tracking of variants. 2021 (https://www.gisaid.org/.).

2. World Health Organization. WHO coronavirus (COVID-19) dashboard. 2021(https://covid19.who.int/.).

3. Volz E, Mishra S, Chand M, et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 2021;593:266-269.

4. Faria NR, Mellan TA, Whittaker C, et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 2021 April 14 (Epub ahead of print).

5. Wang P, Nair MS, Liu L, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 2021;593:130-135.

6. Madhi SA, Baillie V, Cutland Cl, et al. Safety and efficacy of the ChAdOx1 nCoV-19 (AZD1222) Covid-19 vaccine against the B.1.351 variant in South Africa. February 12, 2021 (https://www.medrxiv.org/content/10.1101/2021.02.10.21251247v1.).  preprint.

7. Food and Drug Administration. FDA briefing document: Janssen Ad26.COV2.S vaccine for the prevention of COVID-19 (table 22). Vaccines and Related Biological Products Advisory Committee Meeting, February 26, 2021 (https://www.fda.gov/media/146217/download.).

8. Novavax COVID-19 vaccine demonstrates 89.3% efficacy in UK phase 3 trial. Press release of Novavax, Gaithersburg, MD, January 28, 2021 (https://ir.novavax.com/news-releases/news-release-details/novavax-covid-19-vaccine-demonstrates-893-efficacy-uk-phase-3#:~:text=In%20the%20South%20Africa%20Phase,population%20that%20was%20HIV%2Dnegative.).

9. Dhar MS, Marwal R, Radhakrishnan VS, et al. Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. June 3, 2021 (https://www.medrxiv.org/content/10.1101/2021.06.02.21258076v1.). preprint.

10. De Serres G, Skowronski DM, Wu XW, Ambrose CS. The test-negative design: validity, accuracy and precision of vaccine efficacy estimates compared to the gold standard of randomised placebo-controlled clinical trials. Euro Surveill 2013;18:20585-20585.

11. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016;355:i4919-i4919.

12. Lewnard JA, Tedijanto C, Cowling BJ, Lipsitch M. Measurement of vaccine direct effects under the test-negative design. Am J Epidemiol 2018;187:2686-2697.

13. Dean NE, Halloran ME, Longini IM Jr. Temporal confounding in the test-negative design. Am J Epidemiol 2020;189:1402-1407.

14. Gilbert P, Self S, Rao M, Naficy A, Clemens J. Sieve analysis: methods for assessing from vaccine trial data how vaccine efficacy varies with genotypic and phenotypic pathogen variation. J Clin Epidemiol 2001;54:68-85.

15. International Coalition of Medicines Regulatory Authorities. ICMRA COVID-19 Virus Variants Workshop, February 10, 2021 (http://icmra.info/drupal/en/covid-19/10february2021.).

16. Muñoz-Fontela C, Dowling WE, Funnell SGP, et al. Animal models for COVID-19. Nature 2020;586:509-515.

17. Singh JA, Kochhar S, Wolff J, WHO ACT-Accelerator Ethics & Governance Working Group. Placebo use and unblinding in COVID-19 vaccine trials: recommendations of a WHO Expert Working Group. Nat Med 2021;27:569-570.

18. World Health Organization. Emergency use designation of COVID-19 candidate vaccines: ethical considerations for current and future COVID-19 placebo-controlled vaccine trials and trial unblinding. Policy brief. December 18, 2020 (https://apps.who.int/iris/bitstream/handle/10665/337940/WHO-2019-nCoV-Policy_Brief-EUD_placebo-controlled_vaccine_trials-2020.1-eng.pdf.).

19. Krause P, Fleming TR, Longini I, Henao-Restrepo AM, Peto R. COVID-19 vaccine trials should seek worthwhile efficacy. Lancet 2020;396:741-743.

20. WHO Ad Hoc Expert Group on the Next Steps for Covid-19 Vaccine Evaluation. Placebo-controlled trials of Covid-19 vaccines — why we still need them. N Engl J Med 2021;384(2):e2.

21. Collins R, Bowman L, Landray M, Peto R. The magic of randomization versus the myth of real-world evidence. N Engl J Med 2020;382:674-678.

22. Fleming TR, Krause PR, Nason M, Longini IM, Henao-Restrepo A-MM. COVID-19 vaccine trials: the use of active controls and non-inferiority studies. Clin Trials 2021 February 3 (Epub ahead of print).

23. Oxford JS, Sefton A, Jackson R, Innes W, Daniels RS, Johnson NPAS. World War I may have allowed the emergence of “Spanish” influenza. Lancet Infect Dis 2002;2:111-114.

24. Kemp SA, Collier DA, Datir RP, et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 2021;592:277-282.

25. Eaton L. Covid-19: WHO warns against “vaccine nationalism” or face further virus mutations. BMJ 2021;372:n292-n292.

26. Foege WH, Millar JD, Lane JM. Selective epidemiologic control in smallpox eradication. Am J Epidemiol 1971;94:311-315.

27. Henao-Restrepo AM, Longini IM, Egger M, et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet 2015;386:857-866.

28. Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID. Smallpox and its eradication. Geneva: World Health Organization, 1988 (http://whqlibdoc.who.int/smallpox/9241561106.pdf.).

29. Macintyre CR, Costantino V, Trent M. Modelling of COVID-19 vaccination strategies and herd immunity, in scenarios of limited and full vaccine supply in NSW, Australia. Vaccine 2021 April 24 (https://doi.org/10.1016/j.vaccine.2021.04.042.) (Epub ahead of print).

服务条款 | 隐私政策 | 联系我们