提示: 手机请竖屏浏览!

接种BNT162b2疫苗的SARS-CoV-1幸存者体内的泛sarbe冠状病毒亚属中和抗体
Pan-Sarbecovirus Neutralizing Antibodies in BNT162b2-Immunized SARS-CoV-1 Survivors


Chee-Wah Tan ... 呼吸系统疾病 • 2021.10.07
相关阅读
• 针对SARS-CoV-2及其当前(和未来)变异株研发广谱疫苗的可行性

SARS幸存者接种新冠疫苗产生抗多种冠状病毒广谱中和抗体

 

张文宏

复旦大学附属华山医院感染科

 

新冠病毒变异株在一定程度上逃逸了目前新冠疫苗的免疫保护。基于此,我们希望能找到一种新型疫苗接种策略,可以预防目前已知和未来可能出现的新冠变异株,或其他潜在感染人类的冠状病毒。该研究给SARS感染恢复者接种了BNT162b2疫苗,发现与单纯BNT162b2免疫或SARS感染比较,可以有效诱导出针对跨进化枝的泛冠状病毒中和活性,即不仅能够中和目前的新冠突变株,还能够中和在蝙蝠和穿山甲中已发现的其他冠状病毒(sarbecovirus亚属,均与SARS或SARS-CoV-2相近),相对具有广谱性1

查看更多

摘要


新出现的SARS-CoV-2高关注变异株对现有疫苗的预防效果提出了挑战。如果一种疫苗既可预防已知和未来高关注变异株引起的感染,也可预防目前尚未感染人类的sarbe冠状病毒亚属(sarbecovirus)(即未来有可能引起人类疾病的病毒)引起的感染,它将成为理想疫苗。我们在本文中提供了数据证明,为SARS-CoV-1感染的幸存者接种BNT162b2 mRNA疫苗后诱导产生了强效的跨进化枝泛sarbe冠状病毒亚属中和抗体。这些抗体水平高且广谱,不仅可中和已知的高关注变异株,而且可中和在蝙蝠和穿山甲中发现的,且有可能导致人类感染的sarbe冠状病毒亚属。这些观察结果表明了泛sarbe冠状病毒亚属疫苗策略的可行性(由新加坡国家研究基金会[Singapore National Research Foundation]和英国医学研究委员会[National Medical Research Council]资助)。





作者信息

Chee-Wah Tan, Ph.D., Wan-Ni Chia, Ph.D., Barnaby E. Young, M.R.C.P., Feng Zhu, Ph.D., Beng-Lee Lim, M.Sc., Wan-Rong Sia, B.S., Tun-Linn Thein, M.P.H., Mark I.-C. Chen, Ph.D., Yee-Sin Leo, F.R.C.P., David C. Lye, F.R.C.P., and Lin-Fa Wang, Ph.D.
From the Programme in Emerging Infectious Diseases, Duke–NUS (National University of Singapore) Medical School (C.-W.T., W.-N.C., F.Z., B.-L.L., W.-R.S., L.-F.W.), the National Centre for Infectious Diseases (B.E.Y., T.-L.T., M.I.-C.C., Y.-S.L., D.C.L.), Tan Tock Seng Hospital (B.E.Y., M.I.-C.C., Y.-S.L., D.C.L.), Lee Kong Chian School of Medicine, Nanyang Technological University (B.E.Y., Y.-S.L., D.C.L.), Yong Loo Lin School of Medicine (Y.-S.L., D.C.L.) and Saw Swee Hock School of Public Health (Y.-S.L.), National University of Singapore, and SingHealth Duke–NUS Global Health Institute (L.-F.W.) — all in Singapore. Address reprint requests to Dr. Wang at linfa.wang@duke-nus.edu.sg or to Dr. Lye at david_lye@ncid.sg.

 

参考文献

1. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270-273.

2. Peiris JS, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med 2004;10:12 Suppl:S88-S97.

3. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020;5:536-544.

4. Starr TN, Greaney AJ, Hilton SK, et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 2020;182(5):1295-1310.e20.

5. Anderson DE, Tan CW, Chia WN, et al. Lack of cross-neutralization by SARS patient sera towards SARS-CoV-2. Emerg Microbes Infect 2020;9:900-902.

6. Tan CW, Chia WN, Qin X, et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat Biotechnol 2020;38:1073-1078.

7. Bossart KN, McEachern JA, Hickey AC, et al. Neutralization assays for differential henipavirus serology using Bio-Plex protein array systems. J Virol Methods 2007;142:29-40.

8. Perera RAPM, Ko R, Tsang OTY, et al. Evaluation of a SARS-CoV-2 surrogate virus neutralization test for detection of antibody in human, canine, cat, and hamster sera. J Clin Microbiol 2021;59(2):e02504-e02520.

9. Davies NG, Abbott S, Barnard RC, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021;372(6538):eabg3055-eabg3055.

10. Cele S, Gazy I, Jackson L, et al. Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature 2021;593:142-146.

11. Singh J, Rahman SA, Ehtesham NZ, Hira S, Hasnain SE. SARS-CoV-2 variants of concern are emerging in India. Nat Med 2021;27:1131-1133.

12. Lam TTY, Jia N, Zhang YW, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020;583:282-285.

13. Ge XY, Li JL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013;503:535-538.

14. Frutos R, Serra-Cobo J, Pinault L, Lopez Roig M, Devaux CA. Emergence of bat-related betacoronaviruses: hazard and risks. Front Microbiol 2021;12:591535-591535.

15. Fauci AS. The story behind COVID-19 vaccines. Science 2021;372:109-109.

16. Wang P, Nair MS, Liu L, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 2021;593:130-135.

17. Wang P, Casner RG, Nair MS, et al. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe 2021;29(5):747-751.e4.

18. Jangra S, Ye C, Rathnasinghe R, et al. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2021;2(7):e283-e284.

19. Wu K, Choi A, Koch M, et al. Variant SARS-CoV-2 mRNA vaccines confer broad neutralization as primary or booster series in mice. April 13, 2021 (https://www.biorxiv.org/content/10.1101/2021.04.13.439482v1). preprint.

20. Cohen J. The dream vaccine. Science 2021;372:227-231.

21. Hauser BM, Sangesland M, Lam EC, et al. Engineered receptor binding domain immunogens elicit pan-coronavirus neutralizing antibodies. December 8, 2020 (https://www.biorxiv.org/content/10.1101/2020.12.07.415216v1).   preprint.

22. Martinez DR, Schäfer A, Leist SR, et al. Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice. May 11, 2021 (https://www.biorxiv.org/content/10.1101/2021.03.11.434872v2.).  preprint.

23. Saunders KO, Lee E, Parks R, et al. Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature 2021;594:553-559.

24. Brouwer PJM, Caniels TG, van der Straten K, et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science 2020;369:643-650.

25. Starr TN, Greaney AJ, Addetia A, et al. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science 2021;371:850-854.

服务条款 | 隐私政策 | 联系我们